3.604 \(\int \frac{(d x)^m}{\sqrt{a+b x^n+c x^{2 n}}} \, dx\)

Optimal. Leaf size=160 \[ \frac{(d x)^{m+1} \sqrt{\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^n}{\sqrt{b^2-4 a c}+b}+1} F_1\left (\frac{m+1}{n};\frac{1}{2},\frac{1}{2};\frac{m+n+1}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{d (m+1) \sqrt{a+b x^n+c x^{2 n}}} \]

[Out]

((d*x)^(1 + m)*Sqrt[1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]*AppellF
1[(1 + m)/n, 1/2, 1/2, (1 + m + n)/n, (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])
/(d*(1 + m)*Sqrt[a + b*x^n + c*x^(2*n)])

________________________________________________________________________________________

Rubi [A]  time = 0.169189, antiderivative size = 160, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.083, Rules used = {1385, 510} \[ \frac{(d x)^{m+1} \sqrt{\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^n}{\sqrt{b^2-4 a c}+b}+1} F_1\left (\frac{m+1}{n};\frac{1}{2},\frac{1}{2};\frac{m+n+1}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{d (m+1) \sqrt{a+b x^n+c x^{2 n}}} \]

Antiderivative was successfully verified.

[In]

Int[(d*x)^m/Sqrt[a + b*x^n + c*x^(2*n)],x]

[Out]

((d*x)^(1 + m)*Sqrt[1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]*AppellF
1[(1 + m)/n, 1/2, 1/2, (1 + m + n)/n, (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])
/(d*(1 + m)*Sqrt[a + b*x^n + c*x^(2*n)])

Rule 1385

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a +
 b*x^n + c*x^(2*n))^FracPart[p])/((1 + (2*c*x^n)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^n)/(b - Rt[
b^2 - 4*a*c, 2]))^FracPart[p]), Int[(d*x)^m*(1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^n)/(b - Sqrt
[b^2 - 4*a*c]))^p, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n]

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \frac{(d x)^m}{\sqrt{a+b x^n+c x^{2 n}}} \, dx &=\frac{\left (\sqrt{1+\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}}\right ) \int \frac{(d x)^m}{\sqrt{1+\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}}} \, dx}{\sqrt{a+b x^n+c x^{2 n}}}\\ &=\frac{(d x)^{1+m} \sqrt{1+\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}} F_1\left (\frac{1+m}{n};\frac{1}{2},\frac{1}{2};\frac{1+m+n}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{d (1+m) \sqrt{a+b x^n+c x^{2 n}}}\\ \end{align*}

Mathematica [A]  time = 0.19068, size = 183, normalized size = 1.14 \[ \frac{x (d x)^m \sqrt{\frac{-\sqrt{b^2-4 a c}+b+2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^n}{\sqrt{b^2-4 a c}+b}} F_1\left (\frac{m+1}{n};\frac{1}{2},\frac{1}{2};\frac{m+n+1}{n};-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}},\frac{2 c x^n}{\sqrt{b^2-4 a c}-b}\right )}{(m+1) \sqrt{a+x^n \left (b+c x^n\right )}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(d*x)^m/Sqrt[a + b*x^n + c*x^(2*n)],x]

[Out]

(x*(d*x)^m*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x
^n)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[(1 + m)/n, 1/2, 1/2, (1 + m + n)/n, (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]),
(2*c*x^n)/(-b + Sqrt[b^2 - 4*a*c])])/((1 + m)*Sqrt[a + x^n*(b + c*x^n)])

________________________________________________________________________________________

Maple [F]  time = 0.03, size = 0, normalized size = 0. \begin{align*} \int{ \left ( dx \right ) ^{m}{\frac{1}{\sqrt{a+b{x}^{n}+c{x}^{2\,n}}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^m/(a+b*x^n+c*x^(2*n))^(1/2),x)

[Out]

int((d*x)^m/(a+b*x^n+c*x^(2*n))^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d x\right )^{m}}{\sqrt{c x^{2 \, n} + b x^{n} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m/(a+b*x^n+c*x^(2*n))^(1/2),x, algorithm="maxima")

[Out]

integrate((d*x)^m/sqrt(c*x^(2*n) + b*x^n + a), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m/(a+b*x^n+c*x^(2*n))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d x\right )^{m}}{\sqrt{a + b x^{n} + c x^{2 n}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)**m/(a+b*x**n+c*x**(2*n))**(1/2),x)

[Out]

Integral((d*x)**m/sqrt(a + b*x**n + c*x**(2*n)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d x\right )^{m}}{\sqrt{c x^{2 \, n} + b x^{n} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m/(a+b*x^n+c*x^(2*n))^(1/2),x, algorithm="giac")

[Out]

integrate((d*x)^m/sqrt(c*x^(2*n) + b*x^n + a), x)